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Abstract

- We examine iterative methods for solving sparse nonsymmetric indefinite systems of linear

equations. Methods considered include a new adaptive method based on polynomials that satisfy

an optimality condition in the Chebyshev norm, the conjugate gradient-like method GMRES, and

the conjugate gradient method applied to the normal equations. Numerical experiments on several

non-self-adjoint indefinite elliptic boundary value problems suggest that none of these methods is

dramatically superior to the others. Their performance in solving moderately difficult problems is

satisfactory, but for harder problems their convergence is slow.

1. Introduction

In recent years there has been significant progress in the development of iterative methods for

solving sparse real linear systems of the form

Au = b, (1.1)

where A is a nonsymmetric matrix of order N. One key to this progress has been the derivation of

polynomial based methods, i.e. methods whose m-th approximate solution iterate has the form

umn = uo + q_.-,(A)ro, (1.2)

where uo is an initial guess for the solution, ro = b - Auo, and qm- is a real polynomial of degree

m - 1. The residual rm = b - Aum satisfies

rn = [I - Aqm.-i(A)]ro = pm(A)ro, (1.3)

where Pm is a real polynomial of degree m such that pm(O) = 1. Applying any norm to (1.3) gives

irm1l IIpm(A)IIIlroll.

Moreover, if A is diagonalizable as A - UAU - , then

[Ilp(A)II = lUp(A)U-1l1 <5 IJUIIlIU-111 max 1P('\)1,
- Sa(A

so that

Ilrmil < IUIIIIU-'U max Ipm(X)l 11roll. (1.4)

Thus any polynomial p. that is sufficiently small on the eigenvalues of A is a good candidate for

generating an iterative method.
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The conjugate gradient and Chebyshev methods are well-known polynomial-based methods

for solving symmetric positive-definite systems for which the residual polynomials {Pm } have desir-

able optimality properties [8]. Generalizations of these techniques have been developed for solving

both symmetric indefinite systems (see e.g. [3, 4, 17, 18]), and nonsymmetric systems with definite

symmetric part (A + AT)/2 (see e.g. [5, 8, 14] and references therein). In the latter case, all of
.... the eigenvalues of A lie in either the right half or the left half of the complex plane. Sparse linear

systems that both are nonsymmetric and have indefinite symmetric part arise in numerous settings.

Examples include the discretization of the Helmholtz equations for modelling acoustic phenomena

[1] and the discretization of the coupled partial differential equations arising in numerical semi-

conductor device simulation [121. Gradient methods that have been proposed as solvers for such

problems include the conjugate gradient method applied to the normal equations (CGN) [9], the bi-

conjugate gradient method [7], the restarted generalized minimum residual method (GMRES) [20],

and new methods presented in [11, 26]. Smolarski and Saylor [22] and Saad [19] have proposed

adaptive polynomial iteration methods of the form (1.2) using polynomials that are optimal with

S"respect a weighted least squares norm. In this paper, we introduce a polynomial-based method,

PSUP, that computes a polynomial that is nearly optimal with respect to the Chebyshev norm on

a region containing the eigenvalue estimates and then uses this polynomial in (1.2). We compare
its performance with the two gradient methods CGN and GMRES.

.-In Section 2, we give a brief description of the gradient methods CGN and GMRES. In Section

3, we describe the new PSUP method and several heuristics developed to improve its performance.
In Section 4, we describe numerical experiments in which these three methods are used to solve

*• some non-self-adjoint indefinite elliptic problems, and in Section 5 we draw conclusions based on

the numerical tests.

* 2. Gradient Methods

In this section we briefly review two conjugate gradient-like methods for solving nonsymmetric

indefinite systems. The conjugate gradient method [9] is applicable only to symmetric positive

definite linear systems. For nonsymmetric systems, it can be used to solve the normal equations

ArAx - ATb. The scaled residuals {ATrm} satisfy

ATrm Pm(ATA)ATro,

where Pm is the unique polynomial of degree m such that p..(0) - 1 and IlrmII2 is minimum. As

is well known, the condition number of ATA is the square of that of A. Moreover, the standard
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implementation of CGN requires two matrix-vector products at each iteration, one by A and one by
AT, plus 5N additional operations. The storage requirement is 4N words. The dependence of CGN

on ATA has led to efforts to find alternatives that are more rapidly convergent and less expensive

per step. For nonsymmetric systems with positive definite symmetric part, several methods have

been shown to be superior to CGN [5].

GMRES is a method proposed for solving nonsymmetric indefinite systems that avoids the

use of the normal equations [20]. Given an initial guess, uo, for the solution, with residual ro, this

method generates an orthogonal basis {vl,...,v .. } for the Krylov space

Km= span {ro, Aro,..., Am - ro}

using Arnoldi's method. Let v, = ro/IlroIl 2. The Arnoldi process computes for j = 1,..., m

hii = (Avi,vj), i = 1,...,j,
j

j+, = Avj - Zhiivi,

hi+xj = I1Ij+112,
Vi+l = v ji+t/jl,i.

GMRES then computes an approximate solution

m
Ur= U+ C'jvi, (2.1)

where the scalars {ae}iffi are chosen so that I1rmII2 is minimum. These scalars can be computed

by solving the upper Hessenberg least squares problem

mm 11roll2e - fim [12'

where el = (1,0,... ,0)T E Rm +1 and Hm is the Hessenberg matrix of size (m + 1) x m whose

(i,j)-entry is hii [20]. By the choice of basis and the minimization property, rm = pm(A)ro where

pm is the real polynomial of degree m such that pro(O) = 1 and Pm is optimal with respect to the

residual norm 1rm 112 (c.f. [8 for other formulations of this optimal iteration).

In a practical implementation, the dimension m of the Krylov space is fixed, and the GMRES

iteration is restarted with un in place of uo. This is the GMRES(m) method. Defining one "step"

to be the average of the m-fold iteration divided by m, the cost per step is (m + 3 + 1/m)N

.. operations plus one matrix-vector product. It requires (m + 2)N words of storage.

3
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We remark that the Arnoldi process was originally developed as a technique for computing

eigenvalues [27]. Let Vm denote the matrix whose columns are the m vectors generated by the

Arnoldi step in GMRES(m), and let Hm denote the square upper Hessenberg matrix consisting of

the first m rows of/f/m. Then Vm is an orthonormal matrix of order N x m that satisfies

yTAVm = Hm. (2.2)

Relation (2.2) resembles a similarity transformation, and Arnoldi's method consists of using the

eigenvalues of Hm as estimates for (some of) the eigenvalues of A. Suppose A = UAU - I for diagonal

and ro is dominated by m eigenvectors {ui}7' 1 , with corresponding eigenvalues {A}7__1 . Then

the residual after m GMRES steps satisfies [6]

IIr.I12 !5 IJUI21IU-1112 Cm le112

where m
Cm = JA- Ail/Ai

k>m
j=1

and e is orthogonal to {u}i7' 1 . Loosely speaking, GMRES(m) damps out from the residual the

eigenvectors whose eigenvalues are computed by Arnoldi's method.

3. The PSUP Method

The gradient methods just described compute iterates and residuals that satisfy (1.2) and (1.3)

(for CGN, with respect to ATA) in which the polynomials are built up recursively without explicit

computation of their coefficients. In this section, we describe an alternative iteration that computes

explicitly the coefficients of a polynomial qr- 1(z) for which pm (z) = 1 - zqm- 1 (z) is small on the

spectrum a (A). In the following, we will refer to the polynomial qm-I(z) of (1.2) as the "iteration

polynomial" and to the polynomial pm(z) = 1 - zqm-(z) of (1.3) as the "residual polynomial."

Suppose a compact region D C C contains a(A). Let Pm be a polynomial of degree m that

satisfies

Pm (O) = 1, IIp. 1 = max Ipm(z)I = < 1.zED

As is evident from (1.4), an iteration having Pm as its residual polynomial will result in a decrease

of the residual norm if e is small enough. The best possible iteration polynomial with respect to

this norm (the Chebyshev norm) is the solution to the minimax problem

c= min maxIl - zqm-I(z)1. (3.1)
qm- 1 zED
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Let qm-(z) = azJ. The solution to (3.1) is also the Chebyshev solution to the infinite

system of equations r-1

zj+1 aj = 1, z E aD. (3.2)

j=O

Only the boundary aD need be considered because of the maximum modulus principle.

The PSUP method uses an iteration polynomial obtained from an approximate solution to

(3.1). We briefly summarize the technique used; details can be found in [24]. First, (3.2) is

replaced by a finite dimensional problem

M-1

E zS+ay = 1, z E 8DM, (3.3)
j=O

where 8DM is a finite subset of OD containing M points, M > m. Equation (3.3) is an overdeter-

mined system of M equations in the m unknowns {aj}__1 . The Chebyshev problem for (3.3) is

given by
M-i

min max z'aj-1. (3.4)
{,} Z Mj=O

Second, equation (3.4) is solved approximately using a semi-infinite linear programming approach

to complex approximation, which is based on the identity Iwl = maxo<0<2, Re(we-), w E C. Let

e = {01,.. . ,0Op} C 10, 27r), and define the discretized absolute value

Iwle = max Re(we

Consider the discretized problem

rn-1

min max 1 zj+lai - 1 , (3.5)

where the absolute value in (3.4) is replaced by the discretized absolute value. This gives rise to a

linear program for {ai}_-. Let E* denote the minimax value of I ' z'+ 1 aj - 11 at the solution

to (3.4), and let ep denote the minimax value for (3.5). It can be shown that

Iwle < IwI < jwle sec(o,/2)

for all w E C, and consequently that

5
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where a is the smallest difference (mod 27r) between two neighboring angles in e. The upper

bounds are sharpest for given p when E consists of the p-th roots of unity, so that a -21r/p. We

use this choice of 8 in the following, with p = 256 so that aec(o/2) = 1.000075.

The dual of the LP (3.5) can be written in the form

min Re[erSe-0 ]

StERMxii, QeR

subject to: S > 0, Q >_ 0, ZTSe-i = 0 E Cm

M P

and Q+EESjk 1,
j=1 k=1

where em E CM is the vector whose components are all 1, Z E CMXm is the coefficient matrix of

(3.4), and e i E Cp denotes the vector whose j-th component is e-'Oj. Q is a slack variable which

must be 0 if c* > 0. A straightforward application of the simplex method to the dual requires

O(Mmp) multiplications per simplex iteration and O(Mmp) storage locations. In [24], it is shown

that the factor p can be eliminated from these estimates by exploiting the special structure of the

dual. These economies leave unaltered the sequence of basic feasible solutions that the simplex

method generates en route to the solution. Moreover, they simplify further if the coefficients {aj

are required to be real. In practice the number of simplex iterations has been observed to be O(m)

so that the computational effort to compute {ai} using the algorithm in [23] is O(Mm2 ). In the

experiments discussed below, both M and m are significantly smaller than the order N of the linear

system so that construction of the coefficients of the iteration polynomial is a low order cost of the

solution process.

Given uo and ro, the basic PSUP iteration consists of repeated application of the iteration

polynomial qm-i, as follows:

Algorithm 1: The PSUP iteration.

For k = 1,2,... Do

Ukm = U(k- 1)m + q.-I(A)r(k- )m

rkm = b - AU(k-l)m.

The actual computation w -qm-I (A)r is performed using Horner's rule:

W +-- am-ir

For j = 1 to m - 1 Do

V 4- Aw

W - a4-- i..r + v.

6
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The m-fold PSUP iteration requires m matrix-vector products and m scalar vector products,

so that the "average" cost is one matrix-vector product and one scalar-vector product. PSUP

requires 4N storage, for u, r, v and w.

In practice, the PSUP iteration needs estimates of the eigenvalues of A in order to obtain the

set D. Several adaptive techniques have been developed for combining an eigenvalue estimation

procedure with polynomial iteration [6, 13, 19]. We will use the hybrid technique developed in [6,

19], which uses Arnoldi's method for eigenvalue estimates.

First, the Arnoldi process is used to compute some number ki of eigenvalue estimates prior to

execution of the PSUP iteration. Given these estimates, a set D is constructed that contains them,

from which the PSUP iteration polynomial qm.-1 is computed. (We discuss our choice for D below.)

One possible strategy is to perform the PSUP iteration with qm-1 until the iteration converges.

However, there is no guarantee that all the extreme eigenvalues of A are computed by the Arnoldi

procedure. The set D is contained in the lemniscate region [101 Lm = {z E C I Ipm.(z)I c, where

e and p.. = 1 - zqrn,,-(z) solve (3.1). Moreover, the modulus of pm is greater than e outside Lm

and tends to grow rapidly outside Lm, at least in some directions. If an eigenvalue A lies outside

Lm and Ipm(A)l is large enough, then the PSUP method will diverge.

One way to avoid this behavior is to invoke the adaptive procedure: if PSUP diverges then k,

additional Arnoldi steps are performed to compute ka new eigenvalue estimates. These estimates

are then used to construct a new enclosing set D and a new iteration polynomial qm-i, with which

the PSUP iteration is resumed. A good choice for a starting vector v, is the last residual from the

previous PSUP iteration (normalized to have unit norm). For if PSUP diverges, then the residual

will tend to be dominated by the eigenvectors whose eigenvalues are not being damped out by the

PSUP polynomial. Moreovcr, this technique can be improved using GMRES. Once the ka Arnoldi

vectors are available, the GMRES(k.) iteration (2.1) can be performed at relatively little extra

expense. This has the effect of damping out from the residual the eigenvector components that

were being enhanced by the previous PSUP iteration.

Rather than use the PSUP iteration alone, we consider a hybrid PSUP-GMRES method that

makes use of these observations. This method consists of repeated iteration of some number s of

PSUP steps, followed by a smaller number k. of Arnoldi-GMRES steps. The initial eigenvalue

estimates are provided by k; Arnoldi-GMRES steps, where k; may differ from k.. In addition, the

adaptive procedure is invoked immediately if the residual norm of the PSUP iteration increases

7
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by some tolerance r relative to the smallest residual previously encountered. The following is a

modification of the hybrid method developed in [61 that uses the PSUP iteration:

Algorithm 2. The hybrid GMRES-PSUP method.

Choose uo. Compute ro = b - Auo.

Until Convergence Do

Adaptive (Initialization) Steps: Set vi = the current normalized residual,

perform k. (or ki) Arnoldi/GMRES steps, and use the new eigenvalue

estimates to update (or initialize) the PSUP coefficients.

PSUP Steps: While ([rjJI2/HrminhI2 :_ 7))

Perform s steps of the PSUP iteration (Algorithm 1) to

update the approximate solution u, and residual rj.

For the enclosing set D we take the union of the four sets Dj, where Di is the convex hull of

the set of eigenvalue estimates in the j-th quadrant of the complex plane. With this choice, if the

extreme eigenvalues of each quadrant have been computed, then all the eigenvalues are contained

in D. If all the eigenvalue estimates in either half plane are real, then the part of D containing

these estimates is taken to be the line segment between the leftmost and rightmost estimates in

the half plane.

There is no guarantee that the eigenvalue estimates computed by Arnoldi's method are accu-

rate. Moreover, since the PSUP residual polynomial has the value 1 at the origin, if D contains

points with both positive and negative real parts that are near the origin, then the Chebyshev norm

of the residual polynomial will be very close to 1. (See Section 4 for an example.) We consider

one heuristic designed to improve the performance of the hybrid PSUP method on problems with

eigenvalues very near the origin: we successively remove the points closest to the origin from the

set of eigenvalue estimates (and generate a smaller D) until the norm of the PSUP polynomial is

smaller than some predetermined value q, and use that polynomial for the PSUP iteration.

There are two possible effects of this heuristic. If the deleted points are not accurate as

eigenvalue estimates, then the resulting PSUP iteration will be just as robust and more rapidly

convergent than if the deleted points had been included. On the other hand, if the deleted points

are good estimates, then the PSUP polynomial will probably be large on the deleted points, and

the iteration will not damp out the residual in the direction of the corresponding eigenvectors.

However, if the dimension of this eigenspace is small (say, 2 or 3), then the iteration should damp

out the residual in all other components, so that the residual should be dominated by a small

8



number of components. In this situation, a small number of GMRES steps should damp out these

dominant components. We will refer to the hybrid PSUP method with this heuristic added as the

GMRES/Reduced-PSUP scheme.

We note that with the methods of [24], (3.5) can be also solved with the constraint

M-i

maxE z z+la- 1I i,
ZEE i=o

where E is some finite set. In particular, if E is the set of deleted eigenvalue estimates in the

GMRES/Reduced-PSUP scheme, then the PSUP polynomial on the reduced set D can be forced

to be bounded in modulus by one on the deleted points. In experiments with this version of the

GMRES/Reduc-d-PSUP iteration, we found its performance to be essentially the same as that of

the unconstrained version described above.

4. Numerical Experiments

In this section, we compare the performance of CGN, GMRES(m), GMRES/PSUP and

GMRES/Reduced-PSUP in solving several linear systems arising from a finite difference discretiza-

tion of the differential equation

-- Au + 2PuZ + 2P 2uy - P3 u = f, u E 0, (4.1)

u = g, u E afl,

where 11 is the unit square {0 < x,y !5 1), and P1, P 2 and P3 are positive parameters. We use

f = g - 0, so that the solution to (4.1) is u = 0.

We discretize (4.1) by finite differences on a uniform n x n grid, using centered differences for

the Laplacian and the first derivatives. Let h = 1/(n + 1). After scaling by h2 , the matrix equation

has the form (1.1) in which the typical equation for the unknown uij R u(ih,jh) is

(4 - or)uj - (1 + )U-t j "+ (-1 +, 3)ui+lj - (1 + y)ui~j_. 1 + (-1 + -)Ui.j+l = hfjj,

where ;3 = Pjh, -y = P2h, a = P3 h2 and fo' = f (ih,jh). The eigenvalues of A are given by [21]

37r
4- + 2v- 2 cos- + 2v -2 cos- 1 s, t < n.

n + In+-

The eigenvalues of the symmetric part are

37r t~r
4 -a + 2cos + 2cos , 1 < s,t < n.

n+l n+

9



The leftmost eigenvalue of the symmetric part, corresponding to s = t = n, is given by

(21r2 - P3 )h2 + O(h 4),

so that for small enough h the symmetric part is indefinite when P3 > 27r2,

Six test problems corresponding to six choices of the parameter set {P, P2 , P3} are considered.

We use the three values P3 = 30, 80, and 250 together with each of the pairs of values {P = 1, P 2 =

2} and (P = 25, P2 = 50}. For all tests, n = 31, so that the order N = n2 is 969. For all six test

problems, the coefficient matrix A is indefinite, and the number of negative eigenvalues of (A+AT)/2

is increasing as P3 grows. For the first choice of the (P, P2 ) pair, A is mildly nonsymmetric and

its eigenvalues are real, and for the second choice, A is more highly nonsymmetric and has complex

eigenvalues.

Although it is not our intention here to examine preconditioners for indefinite systems, pre-

conditioning has been shown to be a critical factor in the performance of iterative methods [3, 5,

15]. In our tests, we precondition (1.1) by the finite difference discretization of the Laplacian. That

is, the iterative methods being considered are applied to the preconditioned problem

AQ-'i = b, x =Q-1,

where Q is the discrete Laplacian. (See [2] for an asymptotic analysis of this preconditioner for

finite element discretizations.) The preconditioned matrix-vector product then consists of a pre-

conditioning solve of the form Q-'v and a matrix multiply of the form Av. Since n is a square

domain, the preconditioning is implemented using the block cyclic reduction method at a cost of

3n 21og 2n operations [25]. We have confirmed numerically that the preconditioned matrix AQ - 1 in

all six problems has indefinite symmetric part.

We use the following parameters for the hybrid GMRES-PSUP iteration. In an effort to obtain

the dominant and subdominant eigenvalues of each quadrant at the outset, the initialization step

consists of eight GMRES steps (k, = 8) giving eight eigenvalue estimates. All subsequent calls

to the adaptive procedure consist of four GMRES steps (k, = 4). For all tests with PSUP, we

use a residual polynomial of degree four (m = 4), and allow at most s = 32 PSUP steps (or

eight successive applications of the PSUP polynomial). The adaptive procedure is invoked if the

residual norm increases during a PSUP step (r = 1), or after s steps are performed. We use

Ml = 100 points for the discretized enclosing set aDM, and allocate them so that the number of

points in each quadrant is approximately proportional to the circumference of the convex hull in

that quadrant. For subsets of D that overlap on quadrant boundaries (e.g. if a line segment on the

10
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real line is shared by regions in the first and fourth quadrants), the shared boundary is discretized

twice. For the GMRES/Reduced-PSUP scheme, in which eigenvalue estimates closest to the origin

are deleted until the minimax norm is less than sorr, tolerance iq, we examine i = .5 and .3. For

this scheme, we take ka to be two plus the number of eigenvalue estimates deleted. We use the

notation GMRES-PSUP(m) (with m = 4) for the "unreduced" scheme, and GMRES-PSUP(m, 11)

for the reduced version.

We examine GMRES(m) for m = 5 and m = 20. Recall that the latter version generates a

higher degree optimal polynomial at the expense of a larger average cost per step.

All numerical tests were run on a VAX 11-780 in double precision (55 bit mantissa). The

initial guess in all runs was a vector uo of random numbers between -1 and 1. Figures 1 - 6 show

the performance of the methods measured in terms of multiplication counts, for the six problems

(also numbered 1 - 6). Note that the horizontal scale of Figure 1 is wider than the others, and the

scales in Figures 5 and 6 are slightly narrower. Table 1 shows the iteration counts needed to satisfy

the stopping criterion of

!rIIj2 < 10-6.

11r0112 -

A maximum of 100, 150, and 200 iterations were permitted for the CGN, GMRES and PSUP meth-

ods, respectively. (For these iteration counts, CGN, GMRES(20) and GMRES-PSUP(4) performed

roughly the same number of operations.) Our main observations on this data are:

1. Problems 1 and 3 are solved efficiently by nearly all the methods, but for the other four problems

convergence is slow.

2. In general, the hybrid GMRES-PSUP(m) scheme is weakest. The plateaus in Figures 3. 5

and 6 for this method correspond to the PSUP step, for which convergence is very slow.

The "reduction" heuristic improves the performance, but the improvement is due largely to

increased effectiveness of the GMRES part of the iteration (e.g. in the steep drops of Figures

2 - 4), and the improved performance is not better than that of GMRES alone.

3. On the whole, GMRES(20) and CGN are the most effective methods for these problems, but

" they are not dramatically superior to the others. GMRES(20) converges more rapidly than

GMRES(5).
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Excluding storage for the matrix and right hand side, the storage requirements for the methods

considered are
CGN: 4N

GMRES(5): 7N

GMRES(20): 22N

All PSUP variants: 1ON

The high cost of the PSUP methods is due to the eight initializing GMRES steps.

Problem # 1 2 3 4 5 6

CGN 13 >100 28 >100 >100 >100
GMRES(5) 13 > 150 46 > 150 > 150 > 150

GMRES(20) 10 111 17 119 >150 >150
GMRES-PSUP 16 >200 199 >200 >200 >200

PSUP(4,.5) 16 >200 62 >200 >200 >200
PSUP(4,.3) 16 >200 70 >200 >200 >200

Table 1: Iteration counts.

Although the GMRES/Reduced-PSUP (PSUP(m, q)) scheme is not as fast as pure GMRES,

the reduction heuristic does have its intended effect of improving upon the hybrid scheme. We

briefly examine the effect of the heuristic on Problem 3, focusing on two curve segments of Figure 3:

the plateau of curve D (GMRES-PSUP(4)) between multiplication counts 200000 and 300000, and

the last plateau in curve E (GMRES-PSUP(4,.5)). For curve D, on return from the adaptive step

at about multiplication count 200000, the real parts of the eigenvalue estimates lie in the intervals

[-3,-.33] and [0.4,.981, the Chebyshev norm of the residual polynomial is .98, and convergence is

slow. For curve E, on return from the adaptive step prior to the last plateau of the curve, the real

parts of the eigenvalue estimates lie in the intervals [-3,-.56] and [.05,.97], and the Chebyshev norm

is .96. The effect of deletion of points is shown in Table 2. The Chebyshev norm is very large when

there are points near the origin, and it declines as these points are deleted. The deletion of points

does not significantly hurt the PSUP part of the iteration and it strongly enhances the effect of the
GMRES steps.

We remark that we also considered other variants of the PSUP iteration. In experiments with

degrees m = 6 and 10 the performance of PSUP was essentially the same.* Moreover, as we noted

*In some tests with degree 16, we were unable to generate the polynomial coefficients. We believe the choice of the powers

of z as basis functions makes (3.5) ill conditioned for large m; see [191. In addition, the implementation based on Homer's rule

may suffer from instability for large m.
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Deleted Intervals Containing Chebyshev
Points Real Parts Norm

[-3, -.561, [.05,.971 .96
.05 [-3, -.56], [.34,.971 .76
.34 [-3, -.561, [.61,.97] .55

-.56 [-3,-1.461, [.61,.971 .33

Table 2: Effect of point deletion on GMRES/Reduced-PSUP(4,.5)

for Problem 3.

in Section 3, a variant of the GMRES/Reduced-PSUP in which the PSUP polynomial is constrained

to be bounded in modulus by one on the set of deleted eigenvalue estimates displayed about the

same behavior as the unconstrained version. Similarly, we tested LSQR [16], a stabilized version

of CGN, and found that its performance was nearly identical to CGN.

5. Conclusions

*_ The GMRES and PSUP methods are iterative methods that are optimal in the class of

polynomial-based methods with respect to the Euclidean or " norms respectively, for arbitrary

nonsingular linear systems. For linear systems in which the coefficient matrix is either symmetric or

definite (or both), these types of methods are effective solution techniques [3, 5]. In particular, they

are superior to solving the normal equations by the conjugate gradient method. In the results of

- -Section 4, the methods based on polynomials in the coefficient matrix are not dramatically superior

to CGN, especially for systems that are both highly nonsymmetric and highly indefinite. GMRES

appears to be a more effective method than PSUP.

We note that the best results for other classes of problems depend strongly on preconditioning.

We used the discrete Laplacian as a preconditioner in our experiments, and the large iteration/work

counts in the results show that this is not a good choice for the given mesh size when the coefficients

in the differential operator are large. We believe that improvements in preconditioners are needed

to handle this class of problems.
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